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Abstract. It is proposed the approach of numerical methods application to find optimal controls for discrete

dynamic systems on the base of reduction to solving the corresponded problem about optimisation of some several

variable function with some restriction, so that this proposed approach is suitable both for linear and both for

nonlinear systems. The principal idea is in representing the control through the finite number of scalar parameters

and in building the function of these parameters, so that the optimum of this function will represent the optimal

control approximately. Although the proposed approach leads to the approximate solutions and requires a lot of

computations, but this approach is suitable for solving the applied tasks, and finding of the optimal controls for

the wheeled electromechanical platform is considcered as the example of using this approach.
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1 Introduction

Improvement of the control gives a lot of possibilities to increase the operational efficiency even
without the significant changes in building of systems, and it is widely used at present for
different applications. It is naturally, that the optimality is the key property providing control
improvement for different systems, so that considering of the fundamental problems about the
optimal control, like in the research Yakub et al. (2021) for example, is pincipally required to
solve different tasks in engineering (Kim & Singh, 2022), biology (Day & Taylor, 2000), public
health (Aghdaoui et al., 2021) and others fields. Thus, the proposed research is in current interest
because of considering the universal approach, based on the numerical methods to directly find
the optimal controls for the general case of the discrete dynamic systems, and it is suitable for
different applications.

The most fundamental of existed results in the field of optimal control is the Pontryagin’s
maximum principle developed in 1960-th, so that a lot of researchers use the ideas of this prin-
ciple to formulate new theoretical results like in research (Mahmudov, 2021), for example, in
which some sufficient optimality condition was derived. The research Cardin & Spiro (2019)
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shows us the new insightful way to derive the Pontryagin’s maximum principle, and it suggests
generalizations in diverse directions of such famous principle. The research Day & Taylor (2000)
deals with generalisation of the Pontryagin’s maximum principle to consider the dynamic evo-
lutionary games between genetically related individuals, and the corresponded theorems was
considered.

Using of Pontryagin’s maximum principle allows considering also the optimal control problem
for different engineering tasks. Although, the Pontryagin’s maximum principle is the fundamen-
tal result on the theory of control, but it gives the way to solve a lot of particular tasks for
different applications. This principle was used in the researches Lohneac et al. (2022); Pereira
(2021); Song et al. (2020); Ritter et al. (2022) to find control optimal in time, in energy and
in others sences for different kinds of engineering systems, as well as to find optimal control of
different pandemic processes, like in the researches Aghdaoui et al. (2021); Riouali et al. (2022)
for example. The importance of the Pontryagin’s maximum principle is significant, but using it
to solve the particular tasks requires understanding a lot of mathematical notions, and it can
be realised only for separate classes of the considered systems, so that using of computers is
necessary only to make the correspondent calculations, wich must be epspecially biult for each
particular task. Thus, problems about an optimal control for dynamic systems are in consid-
erations more than 50 years yet, but the most of the existed principal results are in the field
of pure mathematics, so that we have no suitable universal approaches to direct solve tasks
about optimal control for different applications using numerical methods at present. At the
same time, we have a lot of numerical methods to direct solve the ordinary differential equations
representing the mathematical models of different discrete systems, and, due to it, we have wide
opportunities in computer simulations for different, including complicated, systems. For exam-
ple, the complicated systems with interacted mechanical, electrical and electronic components
was considered both for computer simulations and both for indirect measures in the research
Mamalis et al. (2021), and a lot of others similar researches are existed. It is naturally, that
wide opportunities in computer simulations of complicated systems allow considering a lot of
applications, but limited oppportunities in using the numerical methods lead to necessities of the
pure mathematics methods using to solve the optimal control problems, and it makes difficult
considering a lot of correspondent applications in the fields of controls improvements. The prin-
cipal difficulties in using the numerical methods to direct find the optimal controls are due to
involving the abstract mathematical notions like the permissible controls set and others similars
required for correspondent problems, but not agreeded with the discrete nature of numerical
methods.

Optimisation for different applications, discussed in the researchers Corriou (2021); Ravin-
dran et al. (2006); Yang (2018) and others similars, is the relatively separate field significantly
based on the numerical methods. Such numerical optimization envisages considering the prob-
lem about the minimum or maximum value of some several variables function representing the
used optimality criteria, and a lot of numerical methods was proposed to solve it, including
with only computing the value of the researched function for its given arguments. Taking into
account this circumstance, it seems naturally to reduce the optimal control problem to equiva-
lent problem about minimization or maximization of some several variables function and to use
the well-known numerical methods described in the researches Corriou (2021); Ravindran et al.
(2006); Yang (2018) to solve this equivalent problem. Such approach will allow directly finding
the optimal controls for the dynamic systems by using the corresponding numerical methods.

Taking into account all noted above circumstances, the principal purpose of this research is in
development of the approaches for numerical methods using suitable for the different applications
to find the optimal controls for discrete dynamic systems. To realise this principal purpose, the
following particular objectives will be accomplished:

• it will be considered the general mathematical formulation of the optimal control problem
for the common case of discrete dynamic systems;
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• it will be developed the approach for reducing of the formulated optimal control problem
to the resolving problem about minimization of some several variables function to use
further the numerical methods to direct find of the optimal cointrol;

• it will be considered the particular example of using the proposed approach to find the
optimal control for some given electromechanical wheeled platform.

These particular objectives really allow us to fully accomplish of the formulated principal pur-
pose, although it is difficult to envisage all possible difficulties through one considered example
only.

2 Mathematical formulation of the problem

We will consider further the optimal controls only for the discrete dynamic systems with the
mathematical models represented by the finite systems of ordinary differential equations and the
correspondent initial conditions. The mathematical formulation of the optimal control problem
will be presented in the view enough only to use the numerical methods further.

Optimal control problem envisages, that the state of the researched system is changed during
the time starting thom some given initial time moment, so that we will imagine the time as
the continuous variable with the values t ≥ t0, where t0 is the time value corresponded to
the initial time moment. To represent the mathematical formulation of the problem we will
introduce the time dependent finite-dimensional vector x = x (t) representing the state of the
researched discrete dynamic system. Besides, to consider the optimal controls we must introduce
also the time dependent finite-dimensional control vector u = u (t). We will assume that the
mathematical model of the researched discrete dynamic system will have the following view with
taking into account the introduced above notions:

dx

dt
= f (t,x;u) , x (t0) = x0, (1)

where f is the given vector function defining the differential equations, and x0 is the given vector
defining the state of the researched system at the given initial time moment t = t0.

It is naturally, that the controls u = u (t) cannot be arbitrary and must be limited in
agreement with the considered problem and it mathematical model (1). Such limitations of
the controls, at least, must provide existance of the solution for the initial-value problem (1).
Besides, such limitations can involve some additional restrictions borned from the sense of the
considered problem, so that for the most applications they can be generally represented in the
form:

‖u (t)‖ ≤ Cu, Cu > 0 ∀t ≥ t0 (2)

where ‖•‖ is the norm in some suitable functional space and Cu <∞ is some given value.
Let introduce the set U of the controls providing existance of the solution for the initial-

value problem (1) and satisfying the limitation (2), whose represents usually the possible used
power in the case of technical systems. Mathematical model (1) allows defining the state of the
researched discrete dynamic system as the parameteric set of time depended functions x = x (t)
with the parameter corresponded to the control u ∈ U . So, to show that the time dependent
state x = x (t), defined through the mathematical model (1), is actually corresponded to some
control u ∈ U , we will use the follow relation:

x = x (t;u) . (3)

The relation (3) actually represents the solutions of the initial-value problem (1), so we cannot
have this relation in analytical view in a general case. At the same time, the initial-value
problem (1), representing the mathematical model of the researched discrete dynamic system,
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can be approximately solved by using the different well-known numerical methods (Korn &
Korn, 2000) for each given control u = u (t) satisfying the necessary conditions, so that u ∈ U .

The controls u = u (t) are actually required to provide optimal transitions of the researched
dynamic system (1) from some given initial states to some given wished final states, so that
the principal problem is in finding of the optimal controls u = u (t), proviiding such optimal
transitions, but not in modelling of the researched dynamic system (1) for some given controls
u = u (t). Actually, it is not necessary, and, even, it is not possible practically to provide
controlling and governing for all the state parameters of the researched dynamic system (1)
included in it state vector x = x (t). It is principally necessary to provide controlling and
governing only for some parameters, which will be named further as the controlled parameters,
and which will be imagined as the components of the time depended vector denoted as y = y (t)
and named as the vector of controlled parameters of the researched dynamic system. The vector
y of controlled parameters actually gives some representation of the state of the researched
dynamic system (1) defined by the state vector x, so that the following relation is existed:

y = y (x) , (4)

where y (x) is some given function giving the definition of the controlled parameters of the
researched dynamic system.

The relation (4) shows, that time dependence of the control parameters y (t) cannot be
arbitrary, and it is predefined only by changes of the state of researched system (1) represented
by time dependence of the state vector x (t). Due to the relation (4), we can see, that the vector
y of controlled parameters at the initial time moment t = t0 can be defined by using the initial
condition form the mathematical model (1) for the state vector x:

y (t0) = y0, y0 = y (x0) . (5)

Taking into account the relation (4), defining the controlled parameters, and the relation (3),
representing the state of the researched dynamic system (1) for the given control, we will see,
that the vector of the controlled parameters will be depended on the time t in correspondence
with the each of particular control u (t), and, similarilly with the view (3), we will have the
following:

y = y (t;u) . (6)

The control u = u (t) is actually required to provide transition of the system (1) from given
initial state, defined by the value t0 and the state vector y0, to some given wished final state,
defined by the time value tf and the given state vector yf , so that this wished final state must
satisfy the following relation:

y (tf ) = yf . (7)

Relations (6) and (7) allow defining the set Uf ⊂ U of the permissible controls providing tran-
sition of the considered system (1) from the initial state to the final state in the following view:

Uf : ∀u ∈ Uf ⇒ y (tf ;u) ≡ yf . (8)

The relation (8) defines a lot of different controls in the general case, so to have the optimal
control, we must define the optimality criteria, and such criteria is defined ussually by means
some functional:

J = J (u (t)) , J (u (t)) =

tf∫
t0

g (t,x (t,u (t)) ,u (t)) dt, (9)

where g (t,x,u) is some given function defining the sence of the control optimality.
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The functional (9) allows defining the optimal control:

uopt (t) ∈ Uf : J (uopt (t)) ≤ J (u (t)) ∀u (t) ∈ Uf , (10)

where uopt (t) is the optimnal control.
It is understandable, that existance of the optimal control problem solution, defined by the

relation (10), will be possible only due to the correspondent properites of the researched system
mathematical model (1), of the controlled parameters definition (4), of the final state (7), as
well as of the function (9) defining the optimality condition. We will not discuss futher the
thoretical aspects of the optimal control problem, but we will develope only the approach to use
the numerical methods to find the optimal control.

3 Approach to solution based on numerical methods

Difficulties in using the numerical methods to find the optimal control, defined by the relation
(10), is due to the complicated nature of the set (8) and the the functional (9), whose are defined
indirectly through the soplution of the nonlinear initial-value problem (1).

To compute the functional (9) value for the given control u (t) by using the numerical meth-
ods, it is suitable to represent the integral from the optimality criteria (9) in the equivalent form
of the ordinary differential equation and the initial condition:

dJ

dt
= g (t,x,u) , J (t0) = 0. (11)

The differential equation with the initial condition (11) can be considered in couple with the
differential equations and initial conditions (1), so that computation of the functional (9), defin-
ing the optimality criteria, can be reduced to the solution of the initial-value problem, and it is
possible to use different well-known numerical methods, like Runge-Kutte and others (Korn &
Korn, 2000), to do it. Thus, computation of the functional value (9), defining the optimaliity
criteria, has some difficulties, because it requires solving the nonlinerar initial-value problem (1),
(11), but these difficulties are not principal due to using the corresponded well-known numerical
methods.

The difficulties in using of the control set Uf definition through the relation (10) to find
the optimal control (10) numerically are because of the numerical methods have the discrete
nature counterwise with the set Uf inherent properties. So, to use numerical methods to find
the optimal control (10), it is necessary to represent the set Uf in the suitable discrete form,
and, to do it, we will assume, that all of the controls u (t) can be defined through the finite
number n of the some scalar parameters a1, a2, . . . , an. This assumption can be equivalently
represented by means the following relation

u (t) = ũ (t; a1, a2, . . . , an) , (12)

where ũ (t; a1, a2, . . . , an) is some given function.
The control representation (12) allow us to reduce finding of the optimal control (10) to

defining of the correspondent scalar parameters ak, k = 1, 2, . . . , n. To do it, we must reformulate
the initial-value problem (1), (11) taking into account the control representation (12), so it will
lead to the following:

dx

dt
= f (t,x; a1, a2, . . . , an) , x (t0) = x0, (13)

dJ

dt
= g (t,x; a1, a2, . . . , an) , J (t0) = 0, (14)

where f (t,x; a1, a2, . . . , an) is the vector function defined by substitution of the control repre-
sentation (12) to the the introduced above vector function f (t,x;u); g (t,x; a1, a2, . . . , an) is the
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function defined by substitution of the control representation (12) to the the introduced above
function g (t,x;u).

It is understansdable, that solution of the initial-value problem (13), (14) will be the time
dependent vector x (t) corresponded to each particular set of the parameters a1, a2, . . . , an,
defining the control u (t) in the agreement with the relation (12), and, similarilly to the view
(3), we will represent such cerrespondence as following:

x = x (t; a2, a2, . . . , an) , (15)

where x (t; a2, a2, . . . , an) is actually the introduced above solution x (t;u) corresponded to the
control (12).

The solution of the initial-value problem (13), (14), represented in the view (15), allows
transforming the controlled parameters (4) and the functional (9), defining the optimality criteria
(9), to the following:

y = y (t; a2, a2, . . . , an) , J = J (t; a2, a2, . . . , an) , (16)

where y (t; a2, a2, . . . , an) is actually the introduced above controlled parameters y (t;u), and
J (t; a2, a2, . . . , an) is the function representing the introduced above functional (9), defining the
optimality criteria, so that all of them correspond to the control (12) through the inital-value
problem (13), (14).

The condition (8), defining the set Uf of the permissible controls providing achievement of
the given final state from the given initial state in agreement with the mathematical model
(1), must be reformulated regarding with the used control representation (12) in the term of
the scalar parameters ak, k = 1, 2, . . . , n. So, taking into account the conditions (2) and (8)
instead the set Uf , we will have the set An

f of the sets {a1, a2, . . . , an} of the scalar parameters
ak, k = 1, 2, . . . , n, providing achievement of the given final state from the given initial state in
agreement with the mathematical model (13)-(16), in the following view:

An
f : ∀ {ak}nk=1 ∈ A

n
f ⇒ y (tf ; a1, a2, . . . , an) ≡ yf

∨
‖ũ (t; a1, a2, . . . , an)‖ ≤ Cu, (17)

where
{
aoptk

}n

k=1
is notation used for compact representation of the set {a1, a2, . . . , an}.

Taking into account the definition (17) of the set An
f and second relation (14), we can reduce

finding of the optimal control, represented by the condition (10), to finding the following optimal
values:{

aoptk

}n

k=1
∈ An

f : J
(
tf ; aopt1 , aopt2 , . . . , aoptn

)
≤ J (tf ; a1, a2, . . . , an) ∀ {ak}nk=1 ∈ A

n
f . (18)

The set
{
aoptk

}n

k=1
, defined by the condition (18), and the representation (12) will allow us to

have the approximate representation of the optimal control:

uopt (t) ≈ ũ
(
t; aopt1 , aopt2 , . . . , aoptn

)
. (19)

Due to the approximate relation (19), we can see, that finding of the optimal control (10) is
reduced to finding of the minimum value (18) of the several variable function, defined by second
relation in (15), inside the domain An

f , defined by the condition (17). To find the minimum
of this several variables function J in the domain An

f , it is possible to use the well-known
numerical optimisation methods (Corriou, 2021; Ravindran et al., 2006; Yang, 2018) requiring
only computation of the values of the minimised function J for the given values of its arguments
a1, a2, . . . , an. At the same time, using the numerical optimisation methods to minimise the
function J in the domain An

f , we will have difficulties due to this function and this domain
are defined indirectly through the initial-value problem (13). Although, a lot of well-known
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numerical methods can be used to solve the initial-value problem (13), but necessity of solving
this initial-value problem to compute the value of minimised function J will lead to significant
computing time to find of the minimum value of such indirect defined function J , especially in
the case of big number n of it argiments a1, a2, . . . , an.

It is necessary to note, that the control representation (12) significantly limits the class of
the considered controls, and it is really difficult to establish the correspondence degree between
the exact solution (10) and the approximate numerical solution used in the relation (19). Thus,
it is impossible to expect, that the approximate numerical solution, used in the approximate
relation (19), will represent the exact solution (10) closely enough in general case, so that the
proposed approach of using the numerical methods to find the optimal control will not allow
having any reliable imaginations about the exact solution for the optimal control defined by
the relation (10). Nevertheless, although, the proposed approach to find the optimal control
numerically cannot claim on general resolving the optimal control problem, but this approach
is important for different applications. Really, it is actually impossible to realise all the controls
from the set Uf for the existed controlled systems due to the inherent limitations in kinematics,
in power and others, so that we have the limited possible controls for all really existed systems,
and such limited controls for a lot of really existed systems can be represented by the relation:

u (t) =

n∑
k=1

akϕk (t) , (20)

where ϕk (t) are some given vector functions with the dimensions equal to the dimension of the
control vector u, and which represent the possible control modes of the researched system.

The relation (20), representing the possible controls in the really existed, but not in thoret-
ically imagined systems, is actually the particular case of the general relation (12) representing
the control through finite numbet of scalar parameters. Due to it, the proposed approach, based
on the general relation (12), is really suitable to find optimal controls in really existed systems,
representing different applications, although, this approach cannot solve the optimal control
problem in general sence (10).

4 Example of the proposed approaches application

The system represented by the significantly nonlinear ordinary differential equations, so that
linearisation is not possible principally, will be used to illustrate the proposed approaches for
numerical methods application to find the optimal control for the discrete dynamic systems.
Using of the significantly nonlinear system as the example will allow showing of exactly numerical
methods usefulness.

The electromechanical six-wheeled platform fig. 1 is considered as the example of the re-
searched discrete dynamic system. The straight-line motion of the housing-1 of the considered
six-wheeled platform (fig. 1a) is due to rotations of the wheels-2, and rotations of the wheels-2
are due to the electromechanical couples Me, which are provided by the driving direct current
electric motors-3, so that one separate motor is envisaged for each separate wheel. We will as-
sume, that all of the platform wheels are rotated without sliding, so the rotation angle q1 of the
wheels fully defines the state and can be considered as the generalised coordinate representing
all the mechanical parts of the researched platform (fig. 1a). The significant nonlinearities in the
differential equations, representing the mathematical model for such electromechanical wheeled
platform (fig. 1a), are due to the aerodynamic damping force Fa with the direction depending
on the velocity directing of the platform housing, as well as due to the rolling friction couple Mrf

with the direction depending on the rotation directing of the wheel. Besides, the significant non-
linearities are due to depending of the Fa aerodynamic force on square of the platform velocity,
as well as due to depending of the rolling friction couple Mrf on the supplied driving couple Me,
if the wheel is not rotated. We will use the schematisation of the driving direct current electric
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Figure 1: Schematisation of the electromechanical six-wheeled platform (a) with hopusing-1, wheels-
2, electric motors-3, as well as schematisation of the equivalent scheme (b) of electric motors

motors like on fig. 1b taking into account the resistance Re and the inductance Le of the rotor
winding, the supplied power with the voltage Ue = Ue (t), as well as the voltage Eω generated
due to rotation in the magnetic field of the rotor with the electric current in the winding. The
state of the electrical part of the driving electric motors will be defined by the generalised coor-
dinate q2 representing the electric charge in the equivalent electric circuit (fig. 1b) of the rotor
winding. We will consider further the motions of the researched wheeled platform starting from
the state of rest at the initial time t = 0. Taking into account all described here assumptions
about schematisation of the researched electromechanical six-wheeled platform, we can use the
Lagrange’s equation of 2-nd kind and the electromechanical analogies to biuld the differential
equations representing the state of this researched wheeled platform, like was in research ? for
example. As the result of these approach, we will have two second ordered ordinary differential
equations with the correspondent initial conditions in the following view:

J
d2q1
dt2

= 6Be
dq2
dt
−mgδsign

(
dq1
dt

)
− kr3

(
dq1
dt

)2

sign

(
dq1
dt

)
, (21)

Le
d2q2
dt2

= Ue (t)−Be
dq1
dt
−Re

dq2
dt
, (22)

q1 (0) = 0,
dq1
dt

(0) = 0, q2 (0) = 0,
dq2
dt

(0) = 0, (23)

where J is the equivalent moment of inertia, and m is the total mass of the researched wheeled
platform; δ is the rolling friction coefficient of the wheel; Be is the electromechanical parameter
of the electric motor; k is the coefficient defininmg the aerodynamic forces; r is the equivalent
radius of the wheels; sign (·) is the function defined as the sign of it argument.

To represent the differential equations (21), (22) in adreement with generalised form (1), the
following new variables are introduced:

x1 =
dq1
dt
, x2 =

dq2
dt
, u (t) = Ue (t) . (24)

The variable x1 represents the angular velocity of the wheels of the researches electromechanical
vehicle (fig. 1a), but the variable x2 represents the electric current in the electric circuits (fig. 1b)
of driving electric motors. Due to these introduced new variables (24), the differential equations
(21), (22) will have the following view:

J
dx1
dt

= 6Bex2 −mgδsign (x1)− kr3x21sign (x1) , Le
dx2
dt

= u (t)−Bex1 −Rex2. (25)

It is principally, that first equation (25) is correct only for the case of nonzero velocity x1 6= 0.
To have the differential equation suitable for all values x1 and agreed with the rolling friction
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properties, we must introduce the function:

M (x1, x2) =

{
6Bex2 −mgδsign (x1) , x1 6= 0,
1
2 (6Be |x2| −mgδ + |6Be |x2| −mgδ|) sign (x2) , x1 = 0.

(26)

Thus, taking into account the new variables (24), the transformed equation (25) and the intro-
duced function (26), we can represent the inital-value problem (21)-(23) in the following view:

dx1
dt

=
M (x1, x2)

J
− kr3

J
x21sign (x1) ,

dx2
dt

=
u (t)

Le
− Be

Le
x1−

Re

Le
x2, x1 (0) = 0, x2 (0) = 0. (27)

It is understandable, that the initial-value problem (27), representing the mathematical model
of the researched electromechanical wheeled platform (fig. 1), is actually the particular case of
the general representation (1) of the discrete dynamyc systems. The particular views of the
state vector x, the control vector u, the vector function f (t,x;u), as well as value t0 and the
vector x0, corresponded to the particular case (27) of the generalised initial-value problem (1),
are fully understandable, so that we will not present them here. At the same time, it is necessary
to note, that first differential equation (27) has the significant nonlinearities due to involving
the function sign (·) and, especially, the function (26), so that linearisation of the problem is not
possible in this particular example.

Although, the rotation angle q1 and the rotation velocity x1 of the wheels are really the
most suitable parameter to represent the state of wheeled platforms, but such parameters are
not suitable to research the exploitation processes, so that it is suitable to consider, as example,
the following controlled parameter:

y = rx1. (28)

The controlled parameter y, defined by the relation (28), represents the velocity of the straight-
line motion of the reseaerched wheeled platform (fig. 1a), and this parameter is one of the
most important to define the operational modes. Thus, the mathematical model (27) and the
controlled parameter definition (28) will allow us considering the optimal controls for changing
the straigth-line velocity of the researched electromechanical wheeled platform (fig. 1), and such
controls are reduced to finding the correspondent voltages u (t), which must be supplied on
the driving electric motors. As the example of the optimal control problem for the researched
electromechanical wheeled platform (fig. 1) represented by the mathematical model (27), (28),
we will consider determination of the control u (t) providing the given straight-line velocity yf
at the given time moment t = tf after starting from the state of rest at the initial time moment
t = 0, so that the used electric power must be minimal, and the differential equation (11),
generally defining the optimality criteria, will have the following particular view:

dJ

dt
= x2u (t) , J(0) = 0. (29)

Thus, the mathematical model (26), (27), the controlled parameter (28) and the optimality
criteria (29) allow us to consider the correspondent particular optimal control problem for the
researched electromechanical wheeled platform (fig. 1).

To find the optimal control u (t) providing the required the given velocity yf at the given time
tf moment for the researched electromechanical wheeled platform (fig. 1) starting from the state
of rest, we will use the proposed approach based on using the numerical methods. In agreement
with the proposed approach, we will represent the control u (t) as the linear combination of the
possible controls corresponded for the different operational modes, and we will use the particular
view of the generalised relation (20) as follows:

u (t) = a1 + a2t, (30)
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where a1 and a2 are the unknown parameters, which must be found to optimise the control.
The parameter a1, introduced in the control (30), can characterise the steady states oper-

ational modes, but the parameter a2 can characterise the transient operational modes of the
researched electromechanical wheeled platform (fig. 1). It is necesdsdary to note also, that the
constant voltage, supplied to the driving electric motors in the considered example about the
electromechanical wheeled platform (fig. 1), is the sense of the parameter a1, involved to the
control representation (30), due to the last relation (24). So, it is naturally to assume that

0 ≤ a1 ≤ amax
1 , (31)

where amax
1 is the maximim possible value of the parameter a1.

Although, the considered control (30) only schematically represents the operational modes
of the researched electromechanical wheeled platform, but it is enough to fully illustrate the pro-
posed approach for finding the optimal controls by using the numerical methods. Takingh into
account the introduced control (30), the mathematical model (26), (27), (29) and the definition
(28) of the controlled parameter for the considered example, we will have the generalised rep-
resentation of the controlled parameters and the optimality criteria, presented by the relations
(16), in the following particular form:

y = y (t; a1, a2) , J = J (t; a1, a2) , (32)

where y (t; a1, a2) is the representation of the controlled parameter (28), but J (t; a1, a2) is the
representation of the functional defining the optimality criteria, so that all them are biult through
solving of the initial-value problem (26), (27) for the control (30) with the given parameters a1
and a2.

The relations (32) with the given final values tf and yf allows us to define the parameters
aopt1 and aopt2 representing the optimal control:

aopt1 , aopt2 , G
(
aopt1 , aopt2

)
= 0 : F

(
aopt1 , aopt2

)
≤ F (a1, a2) ∀a1, a2, G (a1, a2) = 0, (33)

where G (a1, a2) = y (tf ; a1, a2)− yf is the function allowing us to define the set of the controls
providing ahievement of the given final state; F (a1, a2) = J (tf ; a1, a2) is the function defining
the control optimality criteria.

Relation (33) is actually the formulation of the optimisation problem about finding of the
minimum of two variable function F (a1, a2) under the restriction defined through the function
G (a1, a2). To solve this optimisation problem (33), it is suitable to consider the following
functions (fig. 2):

G (a1, a2) = a2 −G2 (a1) , FG (a1) = F (a1, G2 (a1)) , (34)

where G2 (a1) is some function chosen so that G (a1, G2 (a1)) ≡ 0.
The introduced functions (34) allow us to reduce the optimisation problem for the two

variables function F (a1, a2) with the restriction G (a1, a2) = 0 to the more suitable optimisation
problem for the one variable function FG (a1):

aopt1 : FG

(
aopt1

)
≤ FG (a1) ∀a1, (35)

aopt2 = G2

(
aopt1

)
, (36)

where 0 ≤ aopt1 ≤ amax
1 and 0 ≤ a1 ≤ amax

1 .
The principal difficulties to solve the optimisation problem (35), (36) are in biulding of the

functions (34), because of the required functions G (a1, a2) and F (a1, a2) are defined indirectly
only through the solution (32) of the initial-value problem (26), (27), (29) taking into account

557



ADVANCED MATHEMATICAL MODELS & APPLICATIONS, V.8, N.3, 2023

the definition of the controlled parameter (28), the representation (30) of the control and the
given final values tf and yf . To solve approximately the optimisation problem (35), (36), we
will build the discrete representation of first function (34) by means it values defined in the
previuosly chosen values (the grid) of the parameter a1 (fig. 2):

a1(k) = (k − 1) ∆a1, G2(k) = G2

(
a1(k)

)
, k = 1, 2, . . . , N, (37)

where a1(k) are the chosen values (the grid nodes) of the parameter a1, but G2(k) are the nodal
values of the function G2 (a1); N is the chosen number of the wished grid values of the parameter
a1 inside the available interval (31), and ∆a1 = amax

1 / (N − 1) is the step of the a1 parameter
grid values.

To find the nodal values G2(k), k = 1, 2, . . . , N , we will solve the set of nonlinear implicitly
defined equations:

G
(
a1(k), G2(k)

)
= 0, k = 1, 2, . . . , N. (38)

To solve the equations (38), it is possible to use the different numerical methods, but further
we will use the Interval Halving (Korn & Korn, 2000). To use this method, it is necessary to
compute the values of the function G (a1, a2) implicitly defined in the relation (33) through the
nonlinear initial-value problem (26), (27), (29), the controlled parameter definition (28), the
control representation (30), as well as the given values tf , yf determining the final state. To do
it, we will use the corresponded numerical methods (Korn & Korn, 2000) suitable to solve the
initial-value problems. The introduced grid nodes and the nodal values (37) allow us to compute
the nodal values of second function (34) representing the assumed in this example optimality
criteria (fig. 2):

FG(k) = F
(
a1(k), G2(k)

)
, k = 1, 2, . . . , N. (39)

To compute the values (39), it is necessary to solve the nonlinear initial-value problem (26), (27),
(29) taking into account the controlled parameter definition (28), the control representation
(30) as well as the given values tf , yf determining the final state. To do it, we will use the
corresponded suitable numerical methods (Korn & Korn, 2000). Having the values (39), we can
define the integer value kopt corresponded to the optimal control:

kopt ∈ {1, 2, . . . , N} : FG(kopt) ≤ FG(k) ∀k ∈ {1, 2, . . . , N} . (40)

The value kopt, defined by the relation (40), allow us to approximately determine the optimal
control (35), (36) as follows:

aopt1 ≈ a1(kopt), aopt2 ≈ G2(kopt). (41)

The approximate values (41) are due to the finite step ∆a1 to represent the possible values (31)
of the a1 parameter, as well as numerical methods applications to compute the nodal values
G2(k) and FG(k), k = 1, 2, . . . , N (fig. 2). So, to have more accurate results (41) for the optimal
control, it is necessary to decrease the step ∆a1. Thus, the optimal control is approximately
find in the considered example about the electromechanical wheeled platform (fig. 1).

5 Computer simulations for the considered example

To show the opportunities of control optimality researches, we will make the computer simu-
lations of the discussed above electromechanical wheeled platform (fig. 1), represented by the
mathematical model including the nonlinear initial-value problem (26), (27), (29), the controlled
parameter definition (28), the control representation (30), as well as the given values tf , yf de-
termining the final state. To make the computer simulations, we will use the following values of
the parameters, involved to the used mathematical model of the researched electromechanical
wheeled platform:

m = 1500kg, J = 35kg ·m2, r = 0, 15m, k = 15kg/m, δ = 0, 01m,
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Figure 2: Scheme of computations to approximately find of the optimal control for the researched
electromechanical wheeled platform

Figure 3: Computer model of the researched electromechanical wheeled platform represented by
using the Scilab Xcos tools

Re = 0, 22Ω, Le = 1, 5mH, Be = 1, 22N ·m/A, amax
1 = 12V, tf = 10s. (42)

To do all the computer simulations, we will use the well-known Scilab free open source software.

To represent the researched electromechanical wheeled platform (fig. 1) in agreement with
the assumed mathematical model, we will use the computer model developed by using the tools
of the Xcos modelling medium envisaged in of the Scilab software, as it is shown on fig. 3. All
significant nonlinearities, inherent for the used mathematical model, are took into account in the
developed computer model (fig. 3). To have the reliable results, it is necessary to substantiate
the correctness of the developed computer model (fig. 3). To do it, we will use the well-known
fundamental property, inherent for wheeled platforms, in having the maximum possible velocity
corresponded to the equilibrium between the given constant driving and established damping
generalised forces at the time moment t→∞. Due to this fundamental property, we khow, that
the solution of the initial-value problem (26), (27), (29), (30) has the follows view:

a2 = 0 ⇒ lim
t→∞

dx1
dt

(t) = 0, lim
t→∞

dx2
dt

(t) = 0, lim
t→∞

x1 (t) = ω, lim
t→∞

x2 (t) = I, (43)
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Figure 4: Simulation results for the states of mechanical (a) and electrical (b) parts for the re-
searched electromechanical wheeled platform under in the case a1 = 12V, a2 = 0

where ω and I are some constants reresenting the wheels angular velocity and the electric current
in the rotors windings of electric motors in correspondence with the value a1, which determines
the driving genegalised forces.

Taking into account the relations (43), the differential equations (26), (27), (29) for the time
t→∞ will have the following view:

6BeI −mgδ − kr3ω2 = 0, a1 −Beω +ReI = 0,
dJ

dt
= a1I. (44)

The equations (44) can be resolved analytically, so that, with the definition (28) of the controlled
parameter, we will have the following:

I =
Beω − a1

Re
, kr3ω2 − 6B2

e

Re
ω +

(
mgδ +

6Bea1
Re

)
= 0, J ∼ a1It, v = ωr, (45)

where v ≡ lim
t→∞

y (t).

The relations (45) allow us to define analytically the values ω, I, v, as well as they show us,
that the time depending of the value J , defining the optimality criteria, must be linear function
for the time t → ∞. So, these relations (45) will be used for benchmarking the results of
computer simulations trough the developed model (fig. 3) for the researched electromechanical
wheeled platform. On the fig. 4, we can see, that the computer simulations results for the
state parameters (the solid curves) of the researched electromechanical wheeled platform are
in fully agreement with the properties (43) and with the corresponded exact values (the dot
lines) defined analytically through the relations (45). The computer simulation results for the
controlled parameter (fig. 5a) of the researched electromechanical wheeled platform are also in
fully agreement with the properties (43) and with the corresponded exact values (the dot lines)
defined analytically through the relations (45). The computer simulation results (fig. 5a) for the
researched electromechanical wheeled platform show us, that the time dependence of the value
of the functional, defining the optimality criteria, makes closer to the linear function, exactly
as was shown by the correspondent relation (45). Thus, we can assume, that the computer
simulations by using the developed model (fig. 3) provide the correct results for the researched
electromechanical wheeled platform, so we can use this developed model (fig. 3) further to find
the optimal controls.

To find the optimal control for the researched electromechanical wheeled platform, we will
build firstly the introduced above function G2 (a1) through the nodal values (fig. 2). To do it, we
will use the grid of the a1 parameter with the step ∆a1 = 3V, so that solving of the correspondent
nonlinear equations, as was discussed above (fig. 2), leads to the results presented on fig. 6a.
We can see (fig. 6a), that the functions G2 (a1), corresponded to the different yf values, are
the linear functions in the considered particular example. Although, linearities of the functions
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Figure 5: Simulation results for the controlled parameter (a) and the optimality criteria functional
(b) for the researched electromechanical wheeled platform in the case a1 = 12V, a2 = 0

Figure 6: Simulation results about the permissible controls providing the given final state achieve-
ment (a) as well as about optimality criteria (b)

G2 (a1) allow us to simplify the representation of these functions, but it is not principal for the
proposed approaches, because this approaches are based on the numerical methods applications
independently from the kind of the function G2 (a1). The built nodal values of the functions
G2 (a1) (fig. 6a) for the different values yf allow us to find the nodal values of the corresponded
functions FG (a1), how it was discussed previously (fig. 2). The computation results (fig. 6b) show
us, that the functions FG (a1), corresponded to the different yf values, are the linear functions
in the considered particular example. Although, linearities of the functions FG (a1) allow us to
simplify the representation of these functions, but it is not principal for the proposed approaches,
because this approaches are based on the numerical methods applications independently from
the kind of the function FG (a1). So, in any case, the function FG (a1), built even through the
nodal values, allows us to determine the optimal control, and we can see (fig. 6b), that the
optimal controls are corresponded to the values a1 = 0 for the different final values yf . We can
see also (fig. 6b), that implementation of the optimal controls will allow decreasing on about 25%
of the energy used to accelerate the electromechanical wheeled platform to the given velocity yf
from the state of the rest during the given time tf .

To substantiate the value a1 = 0 inherent for the biult optimal controls (fig. 6b), it is nec-
essary to understand the sence of the parameters a1 and a2 defining the control (30) of the
resesearched electromechanical wheeled platform (fig. 1). It is necessary to remember, that the
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control (30) in the considered example about the electromechanical wheeled platform (fig. 1) is
the electric voltage supplied on the driving electric motors, as it is defined in the used math-
ematical model (24), (26), (27). So, the involved to the control (30) parameters a1 and a2
deteremine the time dependence of the voltage supplied on the driving electric motors of the
resesearched electromechanical wheeled platform (fig. 1). The values a1 6= 0 are corresponded to
the controls (30) with the stepwise changing of the voltage, supplied to the driving electic motors
of the researched electromechanical wheeled platform (fig. 1), at the initial time moment t = t0.
Counterwise, the values a1 = 0 are corresponded to the controls with the smooth changing of
the voltage, supplied to the driving electic motors of the researched electromechanical wheeled
platform (fig. 1), from the initial zero value at the initial time moment t = t0. In all these
cases, the parameter a2 defines the velocity of smooth changing of the supplied voltage. So, the
results a1 = 0, inherent for the optimal controls, show us, that the optimal controls correspond
to the voltage smoothly supplied to the driving electric motors of the researched electrome-
chanical wheeled platform. As was previously shown in the article (Alyokhina et al., 2021), the
voltage, stepwisely supplied to the driving electric morots, leads to the greater accelerations of
the wheeled platform straight motion. It seems naturally, that providing the bigger accelera-
tions requires the bigger supplied power, so it looks really believable, that the optimal controls,
corresponding to the minimum used energy, must be without stepwise changing to exclude the
bigger accelerations. Thus, the results a1 = 0 for the optimal controls are in the agreement with
the necessities of excluding the stepwise controls variations to minimize the accelerations and,
possible, the jerks of the wheeled platform to decrease the used energy, providing the wished
motions.

6 Conclusions

Although, the theory of optimal control is developed intensively several last decades, but we have
no all-conventional approaches for numerical methods application to find directly the optimal
controls for the discrete dynamic systems at present. At the same time, such approaches are
really required, especially, to consider the applied tasks in different fields. So, the principal
reason to make this research is in striving to development of the approaches for numerical
methods application suitable to find directly the approximate solutions for the optimal controls
of the discrete dinamic systems, and suitable to consider the different applied, but not pure
theoretical, tasks. Thus, all the results of this research are in the applied fields of the optimal
control.

Researches, striving to development of the universal approaches suitable for the applied
tasks about the optimal control, require consideration of the maximum, as possible, generalised
mathematical formulations without the particularisations, especially, leading to linear tasks, as
well as to patricular optimality criterias, like about the time-optimal. So, the general formula-
tion of the optimal control problem for the discrete dynamic systems is presented similarly as
Pontryagin considered it. The principal difference of the considered mathematical formulation
comparing with the Pontryagin’s consideration is in separate introduction of the controlled pa-
rameters in addition to the state and control parameters of the researched system, although,
the notion about the controlled parameters is well-known and widely used at present. Separate
introduction of the controlled parameters in the optimal control problem formulations is princi-
pally required to provide considerations of the applied tasks, especially, because of only some of
the parameters, characterising the researched systems, can be principally controlled in different
applications usually.

It is shown, that the discrete representation of the controls through the set of the scalar value
parameters allows us to reduce the optimal control problem for the discrete dynamic system to
consideration of the resolving optimisation problem for the correspondent several variables func-
tion with some additional restriction. This several variables function represents the optimality
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criteria taking into account the mathematical model of the researched system, but this additional
restriction needs to have the agreement with the given wished final controlled parameters of the
researched system. All these are principaly important, because of it is possible to use a lot of
well-known numerical methods to solve directly the resolving optimisation problem for the sev-
eral variables function with the additional restriction. At the same time, the principal difficulty
is in required computation of the values of such optimized several variables function, actually
defined implicitly through the initial-value problem representing the mathematical model of the
researched systems and the assumed optimality criteria. So, to compute the values of the op-
timized function, it is necessary to solve the correspondent initial-value problem, and only the
numerical methods, like the Runge-Kutta’s methods and similars, must be used to do it. Another
principal difficulty is in consideration of the additional restriction in the resolving optimisation
problem, so that this restriction determines the possible controls providing achievement of the
given wished final values for the researched system controlled parameters. Consideration of this
additional restriction is reduced to solving the corresponded nonlinear equations defined implic-
itly through the initial-value problem, representing the mathematical model of the researched
system with taking into account the definition of the controlled parameters and theirs given final
values. The correspondent well-known numerical methods, like the Interval Halving, the Regula
Falsi and others to solve the correspondent initial-value problem, implicitly determining these
nonlinear equations, the Runge-Kutta’s or others numerical methods must be used. Thus, the
proposed approaches not give us the new numerical methods, but they give us the way of using
the known numerical nethods to solve approximately the optimal control problem for discrete
dynamic systems. The proposed approached cannot claim on solving of the optimal control
problem in general, but they are really suitable to consider the particular tasks representing
different applications.

The considered particular example about the optimal controls for the electromechanical six-
wheeled platform fully presents the typical application technique of the proposed approaches
to use the numerical methods for applied tasks consideration. It is shown, that the proposed
approaches are not sensitive to the view of the differential equations representing the mathe-
matical model of the researched system, to the view of the optimality criteria, as well as to the
definition and to the final values of the controlled parameters. It is also shown, that proposed
approaches can be accomplished by means the different universal computer software for scientific
computations and computer simulations, so that such different software, having the envisaged
standard numerical methods and the scenarios programming tools, can be adopted to find di-
rectly the optimal controls for the discrete dynamic systems from different applied fields. On the
considered example, the compuiter simulation results allow us to see, that the stepwise control
modes must be excluded to provide the optimal control, corresponded to the minimum used
energy to accelerate the electromechanical wheeled platform from the state of rest to wished
velocity during the wished time. This resulting affirmation can be substantiated by the previ-
ously known results, that the stepwise control modes will lead to the bigger accelerations and
the bigger jerks of the wheeled platforms motions, requiring the more suplied energy to provide
them. So, it looks like the minimization of the used power can be connected with minimization
of the motions jerks, at least, on some particular cases. It is also shown, that implementation
of the optimal control can decrease the used energy on even 25%.

7 Acknowledgement

The authors would like to thank Dr. Sc. Svitlana Alyokhina to discuss some of the presented
results in the context of application about the nuclear fuel safe transportation requiring the
minimal motions jerks.

563



ADVANCED MATHEMATICAL MODELS & APPLICATIONS, V.8, N.3, 2023

References

Aghdaoui, H., Alaoui, A.L., Nisar, K.S. & Tilioua, M. (2021). On analysis and optimal control
of a SEIRI epidemic model with general incidence rate. Results in Physics, 20, 103681.

Cardin, F., Spiro, A. (2019). Pontryagin maximum principle and Stokes theorem. Journal of
Geometry and Physics, 142, 274-286.

Corriou, J.-P. (2021). Numerical Methods and Optimization. Theory and Practice for Engineers.
Cham: Springer.Mathematical Handbook for Scientists and Engineers: Definitions, Theorems,
and Formulas for Reference and Review (Dover Civil and Mechanical Engineering) Revised
Edition by Granino A. Korn (Author), Theresa M. Korn (Author)

Day, T., Taylor, P.D. (2000). A Generalization of Pontryagin’s Maximum Principle for Dynamic
Evolutionary Games among Relatives. Theoretical Population Biology, 57(4), 339-356.

Kim, Y., Singh, T. (2022). Energy-Time optimal control of wheeled mobile robots, Journal of
the Franklin Institute, 359(11), 5354-5384.

Korn, G.A. & Korn, T.M. (2000). Mathematical Handbook for Scientists and Engineers: Def-
initions, Theorems, and Formulas for Reference and Review. Mineola, New York: Dover
Publications.
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